Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Hum Genomics ; 18(1): 23, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448978

RESUMO

BACKGROUND/OBJECTIVES: Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS: The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION: In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.


Assuntos
Anormalidades Múltiplas , Nanismo , Osteocondrodisplasias , Animais , Feminino , Humanos , Gravidez , Mutação com Ganho de Função , Irã (Geográfico) , RNA Mensageiro , Proteínas com Domínio T/genética , Fatores de Transcrição , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Genome Med ; 15(1): 102, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031187

RESUMO

BACKGROUND: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".


Assuntos
Proteínas , Peixe-Zebra , Animais , Humanos , Frequência do Gene , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Fenótipo , Proteínas/genética , Peixe-Zebra/genética
3.
Aging (Albany NY) ; 15(22): 12763-12779, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38019471

RESUMO

Children from old fathers carry an increased risk for autism spectrum (ASD) and other neurodevelopmental disorders, which may at least partially be mediated by paternal age effects on the sperm epigenome. The brain enriched guanylate kinase associated (BEGAIN) protein is involved in protein-protein interactions at and transmission across synapses. Since several epigenome-wide methylation screens reported a paternal age effect on sperm BEGAIN methylation, here we confirmed a significant negative correlation between BEGAIN promoter methylation and paternal age, using more sensitive bisulfite pyrosequencing and a larger number of sperm samples. Paternal age-associated BEGAIN hypomethylation was also observed in fetal cord blood (FCB) of male but not of female offspring. There was no comparable maternal age effect on FCB methylation. In addition, we found a significant negative correlation between BEGAIN methylation and chronological age (ranging from 1 to 70 years) in peripheral blood samples of male but not of female donors. BEGAIN hypomethylation was more pronounced in male children, adolescents and adults suffering from ASD compared to controls. Both genetic variation (CC genotype of SNP rs7141087) and epigenetic factors may contribute to BEGAIN promoter hypomethylation. The age- and sex-specific BEGAIN methylation trajectories in the male germ line and somatic tissues, in particular the brain, support a role of this gene in ASD development.


Assuntos
Transtorno Autístico , Epigênese Genética , Adolescente , Idoso , Feminino , Humanos , Masculino , Transtorno Autístico/genética , Metilação de DNA , Pai , Sêmen , Lactente , Pré-Escolar , Criança , Adulto Jovem , Adulto , Pessoa de Meia-Idade
4.
Cells ; 12(12)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371073

RESUMO

The rat hepatic stellate cell line PAV-1 was established two decades ago and proposed as a cellular model to study aspects of hepatic retinoic acid metabolism. This cell line exhibits a myofibroblast-like phenotype but also has the ability to store retinyl esters and synthesize retinoic acid from its precursor retinol. Importantly, when cultured with palmitic acid alone or in combination with retinol, the cells switch to a deactivated phenotype in which the proliferation and expression of profibrogenic marker genes are suppressed. Despite these interesting characteristics, the cell line has somehow fallen into oblivion. However, based on the fact that working with in vivo models is becoming increasingly complicated, genetically characterized established cell lines that mimic aspects of hepatic stellate cell biology are of fundamental value for biomedical research. To genetically characterize PAV-1 cells, we performed karyotype analysis using conventional chromosome analysis and multicolor spectral karyotyping (SKY), which allowed us to identify numerical and specific chromosomal alteration in PAV-1 cells. In addition, we used a panel of 31 species-specific allelic variant sites to define a unique short tandem repeat (STR) profile for this cell line and performed bulk mRNA-sequencing, showing that PAV-1 cells express an abundance of genes specific for the proposed myofibroblastic phenotype. Finally, we used Rhodamine-Phalloidin staining and electron microscopy analysis, which showed that PAV-1 cells contain a robust intracellular network of filamentous actin and process typical ultrastructural features of hepatic stellate cells.


Assuntos
Células Estreladas do Fígado , Vitamina A , Ratos , Animais , Vitamina A/metabolismo , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Linhagem Celular , Tretinoína/farmacologia , Tretinoína/metabolismo
5.
Aging (Albany NY) ; 15(5): 1257-1278, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849136

RESUMO

Advanced paternal age is associated with increased risks for reproductive and offspring medical problems. Accumulating evidence suggests age-related changes in the sperm epigenome as one underlying mechanism. Using reduced representation bisulfite sequencing on 73 sperm samples of males attending a fertility center, we identified 1,162 (74%) regions which were significantly (FDR-adjusted) hypomethylated and 403 regions (26%) being hypermethylated with age. There were no significant correlations with paternal BMI, semen quality, or ART outcome. The majority (1,152 of 1,565; 74%) of age-related differentially methylated regions (ageDMRs) were located within genic regions, including 1,002 genes with symbols. Hypomethylated ageDMRs were closer to transcription start sites than hypermethylated DMRs, half of which reside in gene-distal regions. In this and conceptually related genome-wide studies, so far 2,355 genes have been reported with significant sperm ageDMRs, however most (90%) of them in only one study. The 241 genes which have been replicated at least once showed significant functional enrichments in 41 biological processes associated with development and the nervous system and in 10 cellular components associated with synapses and neurons. This supports the hypothesis that paternal age effects on the sperm methylome affect offspring behaviour and neurodevelopment. It is interesting to note that sperm ageDMRs were not randomly distributed throughout the human genome; chromosome 19 showed a highly significant twofold enrichment with sperm ageDMRs. Although the high gene density and CpG content have been conserved, the orthologous marmoset chromosome 22 did not appear to exhibit an increased regulatory potential by age-related DNA methylation changes.


Assuntos
Epigênese Genética , Epigenoma , Humanos , Masculino , Análise do Sêmen , Sêmen , Metilação de DNA , Espermatozoides/metabolismo , Ilhas de CpG
6.
Clin Cancer Res ; 29(1): 279-288, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36282272

RESUMO

PURPOSE: Proteasome inhibitors (PI) are the backbone of various treatment regimens in multiple myeloma. We recently described the first in-patient point mutations affecting the 20S subunit PSMB5 underlying PI resistance. Notably, in vivo, the incidence of mutations in PSMB5 and other proteasome encoding genes is too low to explain the development of resistance in most of the affected patients. Thus, additional genetic and epigenetic alterations need to be explored. EXPERIMENTAL DESIGN: We performed DNA methylation profiling by Deep Bisulfite Sequencing in PSMB5, PSMC2, PSMC5, PSMC6, PSMD1, and PSMD5, a subset of proteasome subunits that have hitherto been associated with PI resistance, recruited from our own previous research, the literature, or a meta-analysis on the frequency of somatic mutations. Methylation was followed up on gene expression level and by dual-luciferase reporter assay. The KMS11 cell line served as a model to functionally test the impact of demethylating agents. RESULTS: We identified PSMD5 promoter hypermethylation and subsequent epigenetic gene silencing in 24% of PI refractory patients. Hypermethylation correlated with decreased expression and the regulatory impact of this region was functionally confirmed. In contrast, patients with newly diagnosed multiple myeloma, along with peripheral blood mononuclear cells and CD138+ plasma cells from healthy donors, generally show unmethylated profiles. CONCLUSIONS: Under the selective pressure of PI treatment, multiple myeloma cells acquire methylation of the PSMD5 promoter silencing the PSMD5 gene expression. PSMD5 acts as a key orchestrator of proteasome assembly and its downregulation was described to increase the cell's proteolytic capacity. PSMD5 hypermethylation, therefore, represents a novel mechanism of PI tolerance in multiple myeloma.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Bortezomib , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Leucócitos Mononucleares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Nucleotídeos , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555213

RESUMO

A reoccurring issue in neuroepigenomic studies, especially in the context of neurodegenerative disease, is the use of (heterogeneous) bulk tissue, which generates noise during epigenetic profiling. A workable solution to this issue is to quantify epigenetic patterns in individually isolated neuronal cells using laser capture microdissection (LCM). For this purpose, we established a novel approach for targeted DNA methylation profiling of individual genes that relies on a combination of LCM and limiting dilution bisulfite pyrosequencing (LDBSP). Using this approach, we determined cytosine-phosphate-guanine (CpG) methylation rates of single alleles derived from 50 neurons that were isolated from unfixed post-mortem brain tissue. In the present manuscript, we describe the general workflow and, as a showcase, demonstrate how targeted methylation analysis of various genes, in this case, RHBDF2, OXT, TNXB, DNAJB13, PGLYRP1, C3, and LMX1B, can be performed simultaneously. By doing so, we describe an adapted data analysis pipeline for LDBSP, allowing one to include and correct CpG methylation rates derived from multi-allele reactions. In addition, we show that the efficiency of LDBSP on DNA derived from LCM neurons is similar to the efficiency obtained in previously published studies using this technique on other cell types. Overall, the method described here provides the user with a more accurate estimation of the DNA methylation status of each target gene in the analyzed cell pools, thereby adding further validity to this approach.


Assuntos
Doenças Neurodegenerativas , Humanos , Análise de Sequência de DNA/métodos , Metilação de DNA , Encéfalo , Sequenciamento de Nucleotídeos em Larga Escala , Lasers , Chaperonas Moleculares , Proteínas Reguladoras de Apoptose
8.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139474

RESUMO

Hepatic stellate cells (HSCs) are also known as lipocytes, fat-storing cells, perisinusoidal cells, or Ito cells. These liver-specific mesenchymal cells represent about 5% to 8% of all liver cells, playing a key role in maintaining the microenvironment of the hepatic sinusoid. Upon chronic liver injury or in primary culture, these cells become activated and transdifferentiate into a contractile phenotype, i.e., the myofibroblast, capable of producing and secreting large quantities of extracellular matrix compounds. Based on their central role in the initiation and progression of chronic liver diseases, cultured HSCs are valuable in vitro tools to study molecular and cellular aspects of liver diseases. However, the isolation of these cells requires special equipment, trained personnel, and in some cases needs approval from respective authorities. To overcome these limitations, several immortalized HSC lines were established. One of these cell lines is CFSC, which was originally established from cirrhotic rat livers induced by carbon tetrachloride. First introduced in 1991, this cell line and derivatives thereof (i.e., CFSC-2G, CFSC-3H, CFSC-5H, and CFSC-8B) are now used in many laboratories as an established in vitro HSC model. We here describe molecular features that are suitable for cell authentication. Importantly, chromosome banding and multicolor spectral karyotyping (SKY) analysis demonstrate that the CFSC-2G genome has accumulated extensive chromosome rearrangements and most chromosomes exist in multiple copies producing a pseudo-triploid karyotype. Furthermore, our study documents a defined short tandem repeat (STR) profile including 31 species-specific markers, and a list of genes expressed in CFSC-2G established by bulk mRNA next-generation sequencing (NGS).


Assuntos
Autenticação de Linhagem Celular , Hepatopatias , Animais , Tetracloreto de Carbono , Linhagem Celular , Marcadores Genéticos , Células Estreladas do Fígado/metabolismo , Repetições de Microssatélites , RNA Mensageiro/metabolismo , Ratos
9.
Hum Mutat ; 43(10): 1472-1489, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35815345

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for faithful assignment of amino acids to their cognate tRNA. Variants in ARS genes are frequently associated with clinically heterogeneous phenotypes in humans and follow both autosomal dominant or recessive inheritance patterns in many instances. Variants in tryptophanyl-tRNA synthetase 1 (WARS1) cause autosomal dominantly inherited distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Presently, only one family with biallelic WARS1 variants has been described. We present three affected individuals from two families with biallelic variants (p.Met1? and p.(Asp419Asn)) in WARS1, showing varying severities of developmental delay and intellectual disability. Hearing impairment and microcephaly, as well as abnormalities of the brain, skeletal system, movement/gait, and behavior were variable features. Phenotyping of knocked down wars-1 in a Caenorhabditis elegans model showed depletion is associated with defects in germ cell development. A wars1 knockout vertebrate model recapitulates the human clinical phenotypes, confirms variant pathogenicity, and uncovers evidence implicating the p.Met1? variant as potentially impacting an exon critical for normal hearing. Together, our findings provide consolidating evidence for biallelic disruption of WARS1 as causal for an autosomal recessive neurodevelopmental syndrome and present a vertebrate model that recapitulates key phenotypes observed in patients.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Triptofano-tRNA Ligase , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Éxons , Humanos , Mutação , Linhagem , RNA de Transferência/genética , Síndrome , Triptofano-tRNA Ligase/genética
10.
Cells ; 11(11)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35681478

RESUMO

Immortalized hepatic stellate cells (HSCs) established from mouse, rat, and humans are valuable in vitro models for the biomedical investigation of liver biology. These cell lines are homogenous, thereby providing consistent and reproducible results. They grow more robustly than primary HSCs and provide an unlimited supply of proteins or nucleic acids for biochemical studies. Moreover, they can overcome ethical concerns associated with the use of animal and human tissue and allow for fostering of the 3R principle of replacement, reduction, and refinement proposed in 1959 by William M. S. Russell and Rex L. Burch. Nevertheless, working with continuous cell lines also has some disadvantages. In particular, there are ample examples in which genetic drift and cell misidentification has led to invalid data. Therefore, many journals and granting agencies now recommend proper cell line authentication. We herein describe the genetic characterization of the rat HSC line HSC-T6, which was introduced as a new in vitro model for the study of retinoid metabolism. The consensus chromosome markers, outlined primarily through multicolor spectral karyotyping (SKY), demonstrate that apart from the large derivative chromosome 1 (RNO1), at least two additional chromosomes (RNO4 and RNO7) are found to be in three copies in all metaphases. Additionally, we have defined a short tandem repeat (STR) profile for HSC-T6, including 31 species-specific markers. The typical features of these cells have been further determined by electron microscopy, Western blotting, and Rhodamine-Phalloidin staining. Finally, we have analyzed the transcriptome of HSC-T6 cells by mRNA sequencing (mRNA-Seq) using next generation sequencing (NGS).


Assuntos
Autenticação de Linhagem Celular , Células Estreladas do Fígado , Animais , Linhagem Celular , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Ratos
11.
Cells ; 11(7)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406682

RESUMO

The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler's and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.


Assuntos
Ciprinodontiformes , Poecilia , Animais , Ciprinodontiformes/genética , Feminino , Masculino , Poecilia/genética , Cromossomos Sexuais/genética , Áreas Alagadas , Cromossomo Y/genética
12.
EXCLI J ; 21: 117-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221838

RESUMO

Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.

13.
Cells ; 11(4)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203380

RESUMO

A growing number of sperm methylome analyses have identified genomic loci that are susceptible to paternal age effects in a variety of mammalian species, including human, bovine, and mouse. However, there is little overlap between different data sets. Here, we studied whether or not paternal age effects on the sperm epigenome have been conserved in mammalian evolution and compared methylation patterns of orthologous regulatory regions (mainly gene promoters) containing both conserved and non-conserved CpG sites in 94 human, 36 bovine, and 94 mouse sperm samples, using bisulfite pyrosequencing. We discovered three (NFKB2, RASGEF1C, and RPL6) age-related differentially methylated regions (ageDMRs) in humans, four (CHD7, HDAC11, PAK1, and PTK2B) in bovines, and three (Def6, Nrxn2, and Tbx19) in mice. Remarkably, the identified sperm ageDMRs were all species-specific. Most ageDMRs were in genomic regions with medium methylation levels and large methylation variation. Orthologous regions in species not showing this age effect were either hypermethylated (>80%) or hypomethylated (<20%). In humans and mice, ageDMRs lost methylation, whereas bovine ageDMRs gained methylation with age. Our results are in line with the hypothesis that sperm ageDMRs are in regions under epigenomic evolution and may be part of an epigenetic mechanism(s) for lineage-specific environmental adaptations and provide a solid basis for studies on downstream effects in the genes analyzed here.


Assuntos
Metilação de DNA , Idade Paterna , Espermatozoides , Animais , Bovinos , Metilação de DNA/genética , Epigênese Genética , Epigenoma , Masculino , Camundongos , Espermatozoides/metabolismo
14.
Aging (Albany NY) ; 14(3): 1214-1232, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35157611

RESUMO

An age-dependent increase in ribosomal DNA (rDNA) methylation has been observed across a broad spectrum of somatic tissues and the male mammalian germline. Bisulfite pyrosequencing (BPS) was used to determine the methylation levels of the rDNA core promoter and the rDNA upstream control element (UCE) along with two oppositely genomically imprinted control genes (PEG3 and GTL2) in individual human germinal vesicle (GV) oocytes from 90 consenting women undergoing fertility treatment because of male infertility. Apart from a few (4%) oocytes with single imprinting defects (in either PEG3 or GTL2), the analyzed GV oocytes displayed correct imprinting patterns. In 95 GV oocytes from 42 younger women (26-32 years), the mean methylation levels of the rDNA core promoter and UCE were 7.4±4.0% and 9.3±6.1%, respectively. In 79 GV oocytes from 48 older women (33-39 years), methylation levels increased to 9.3±5.3% (P = 0.014) and 11.6±7.4% (P = 0.039), respectively. An age-related increase in oocyte rDNA methylation was also observed in 123 mouse GV oocytes from 29 4-16-months-old animals. Similar to the continuously mitotically dividing male germline, ovarian aging is associated with a gain of rDNA methylation in meiotically arrested oocytes. Oocytes from the same woman can exhibit varying rDNA methylation levels and, by extrapolation, different epigenetic ages.


Assuntos
Metilação de DNA , Oócitos , Idoso , Envelhecimento/genética , Animais , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Feminino , Células Germinativas , Humanos , Mamíferos , Camundongos , Oócitos/metabolismo
15.
Aging Cell ; 21(2): e13555, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35045206

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder caused by mutations in the LMNA gene and characterized by premature and accelerated aging beginning in childhood. In this study, we performed the first genome-wide methylation analysis on blood DNA of 15 patients with progeroid laminopathies using Infinium Methylation EPIC arrays including 8 patients with classical HGPS. We could observe DNA methylation alterations at 61 CpG sites as well as 32 significant regions following a 5 Kb tiling analysis. Differentially methylated probes were enriched for phosphatidylinositol biosynthetic process, phospholipid biosynthetic process, sarcoplasm, sarcoplasmic reticulum, phosphatase regulator activity, glycerolipid biosynthetic process, glycerophospholipid biosynthetic process, and phosphatidylinositol metabolic process. Differential methylation analysis at the level of promoters and CpG islands revealed no significant methylation changes in blood DNA of progeroid laminopathy patients. Nevertheless, we could observe significant methylation differences in classic HGPS when specifically looking at probes overlapping solo-WCGW partially methylated domains. Comparing aberrantly methylated sites in progeroid laminopathies, classic Werner syndrome, and Down syndrome revealed a common significantly hypermethylated region in close vicinity to the transcription start site of a long non-coding RNA located anti-sense to the Catenin Beta Interacting Protein 1 gene (CTNNBIP1). By characterizing epigenetically altered sites, we identify possible pathways/mechanisms that might have a role in the accelerated aging of progeroid laminopathies.


Assuntos
Progéria , Síndrome de Werner , Envelhecimento/genética , DNA/genética , DNA/metabolismo , Metilação de DNA/genética , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutação , Progéria/genética , Progéria/metabolismo , Síndrome de Werner/genética
16.
Hum Genet ; 141(3-4): 785-803, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34148116

RESUMO

Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.


Assuntos
Degeneração Retiniana , Síndromes de Usher , Humanos , Irã (Geográfico) , Mutação , Linhagem , Fenótipo , Degeneração Retiniana/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética
17.
Aging (Albany NY) ; 13(15): 19145-19164, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375949

RESUMO

DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The discovery of differentially methylated sites (DMSs) that continuously change over an individual's lifetime has led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will require technological progress to allow sensitive, simultaneous analysis of a much larger number of age correlated DMSs from the compromised DNA typical of forensic semen stains.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Epigênese Genética , Modelos Genéticos , Sêmen , Adulto , Fatores Etários , Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Adulto Jovem
18.
Sci Rep ; 11(1): 15439, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326359

RESUMO

Non-human primates (NHPs) are, due to their close phylogenetic relationship to humans, excellent animal models to study clinically relevant mutations. However, the toolbox for the genetic modification of NHPs is less developed than those for other species like mice. Therefore, it is necessary to further develop and refine genome editing approaches in NHPs. NHP pluripotent stem cells (PSCs) share key molecular signatures with the early embryo, which is an important target for genomic modification. Therefore, PSCs are a valuable test system for the validation of embryonic genome editing approaches. In the present study, we made use of the versatility of the piggyBac transposon system for different purposes in the context of NHP stem cell technology and genome editing. These include (1) Robust reprogramming of rhesus macaque fibroblasts to induced pluripotent stem cells (iPSCs); (2) Culture of the iPSCs under feeder-free conditions even after removal of the transgene resulting in transgene-free iPSCs; (3) Development of a CRISPR/Cas-based work-flow to edit the genome of rhesus macaque PSCs with high efficiency; (4) Establishment of a novel protocol for the derivation of gene-edited monoclonal NHP-iPSC lines. These findings facilitate efficient testing of genome editing approaches in NHP-PSC before their in vivo application.


Assuntos
Reprogramação Celular/genética , Elementos de DNA Transponíveis/genética , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Macaca mulatta/genética , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Linhagem Celular , Feminino , Fibroblastos/citologia , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Filogenia , Pele/citologia , Transfecção , Transgenes , Transposases/genética
19.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34172899

RESUMO

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Assuntos
Perda Auditiva , Lisina-tRNA Ligase/genética , Transtornos do Neurodesenvolvimento , Alelos , Animais , Modelos Animais de Doenças , Perda Auditiva/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Peixe-Zebra/genética
20.
Blood ; 138(18): 1721-1726, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34115836

RESUMO

Cereblon is the direct binding target of the immunomodulatory drugs (IMiDs) that are commonly used to treat multiple myeloma (MM), the second most frequent hematologic malignancy. Patients respond well to initial treatment with IMiDs, but virtually all patients develop drug resistance over time, and the underlying mechanisms are poorly understood. We identified an as yet undescribed DNA hypermethylation in an active intronic CRBN enhancer. Differential hypermethylation in this region was found to be increased in healthy plasma cells, but was more pronounced in IMiD-refractory MM. Methylation significantly correlated with decreased CRBN expression levels. DNA methyltransferase inhibitor (DNTMi) in vitro experiments induced CRBN enhancer demethylation, and sensitizing effects on lenalidomide treatment were observed in 2 MM cell lines. Thus, we provide first evidence that aberrant CRBN DNA methylation is a novel mechanism of IMiD resistance in MM and may predict IMiD response prior to treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos Imunológicos/uso terapêutico , Agentes de Imunomodulação/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Ubiquitina-Proteína Ligases/genética , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Elementos Facilitadores Genéticos/efeitos dos fármacos , Humanos , Íntrons/efeitos dos fármacos , Mieloma Múltiplo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...